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The Proton is Not a Point-like Particle

• Quark model says p consists of 3 quarks
I Are they real?

• Gyromagnetic moment gp = 5.586 is far from the Dirac value
of 2 that holds for pointlike spin-1

2 particles
I Pattern of baryon magnetic moments can be explained using

quark model with fraction charges, fitting for quark masses

• Size of nucleus consistent with nucleons of size ∼ 0.8 fm

To study structure of the proton, will use scattering techniques
Similar idea to Rutherford’s initial discover of the nucleus



Scattering of Spinless Pointlike Particles

• Rutherford Scattering (spinless electron scattering from a static
point charge) in lab frame:

dσ

dΩ
=

α2

4E2 sin4
(
1
2θ
)

here E is energy of incident electron and θ is scattering angle in the
lab frame

• Mott Scattering: Taking into account statistics of identical spinless
particles

dσ

dΩ
=

α2 cos2
(
1
2θ
)

4E2 sin4
(
1
2θ
)



Scattering of Spin-1
2 Pointlike Particles

• Elastic Scattering of a spin- 12 electron from a pointlike spin- 12
particle of mass M :

I Elastic scattering of electron from infinite mass target changes
angle but not energy

I For target of finite mass M , final electron energy is

E′ =
E

1 + 2E
M sin2

(
1
2θ
)

and the four-momentum transfer is

q2 = −4EE′ sin2

(
1

2
θ

)
The elastic scattering cross section is:

dσ

dΩ
=

α2 cos2
(
1
2θ
)

4E2 sin4
(
1
2θ
) E′
E

[
1− q2

2M2
tan2

(
1

2
θ

)]



What Happens if the Target Particles Have Finite Size?

• Charge distribution ρ(r):
∫
ρ(r)d3r = 1

• Scattering amplitude modified by a “Form Factor”

F (q2) =

∫
d3rei~q·~rρ(r)

So that the cross section is modified by a factor of |F (q2)|2

• Note: As q2 → 0, F (q2)→ 1

• We therefore can Taylor expand

F (q2) =

∫
d3r

(
1 + i~q · ~r − 1

2
(~q · ~r)2 + ...

)
ρ(r)



Form Factors

• The first ~q · ~r term vanishes when we integrate

F (q2) = 1 − 1

2

∫
r2drd cos θdφ ρ(r)(qr)2 cos2 θ

= 1 − 2π

2

∫
drd cos θ q2r4 cos2 θ

= 1 − < r2 >

4
q2

∫
cos2 θ d cos θ

= 1 − < r2 >

4
q2

[
cos3 θ

3

]1

−1

= 1 − < r2 >

6
q2

• For elastic scattering, can relate q to the outgoing angle

q =
2p sin (θ/2)[

1 + (2E/Mp) sin2 (θ/2)
] 1

2

where p and E are the momentum and energy of the incident electron in

the lab frame



Hoffstader and McAllister (1956)

< r2 >
1
2 = 0.74 ± 0.24 × 10−13 cm ∼ 0.7 fm



Elastic Scattering: More on Angular Distributions (I)

• For elastic scattering, the angle uniquely determines the energy of
the outgoing electron

I So angle is the only independent variable

• Can write down the most general form of the matrix element

M =
2πα

q2
Jelectronµ (q)Jµ proton(q)

I Electron is a Dirac particle, so we know Jelectronµ (q) = eψγµψ
I For proton, write down the most general form allowed by Lorentz

invariance and parity conservation

Jprotonµ = ψ(pf )

[
F1(q2)γµ + i

qνσµνκ

2M
F2(q2)

]
ψ(pi)

where pi and pf are the initial and final proton four-momenta,

q = ki − kf = pf − pi is the four-momentum transfer and κ is the

anomalous magnetic moment of the proton



Elastic Scattering: Angular Distributions (II)

• Using the above, can calculate the cross section:

dσ

dΩ
=
α2 cos2

(
1
2
θ
)

4E2 sin4( 1
2
θ)

E′

E

[(
F 2

1 +
κ2Q2

4M2
F 2

2

)
+

Q2

2M2
(F1 + κF2)2 tan2

(
1

2
θ

)]
• κ is the anomolous magnetic moment

• From slide 4, for pointlike spin-1/2 particles:

dσ

dΩ
=

α2 cos2
(
1
2θ
)

4E2 sin4
(
1
2θ
) E′
E

[
1− q2

2M2
tan2

(
1

2
θ

)]
• Understanding these two form factors tells us about the structure of

the proton

We’ll come back to this in a few minutes



Need High Energy Lepton Probe

Stanford Linear Collider (SLAC)
• Two mile linear accelerator (e−)

• Initial phase: energy = 20 GeV

• (Later, upgrade to 50 GeV)

• “End Station A” hall for fixed
target experiments

• Study high momentum transfer
I Need four-momentum transfer

large enough to probe
structure

I Proton breaks apart
I Deep Inelastic Scattering

(DIS)



The SLAC-MIT DIS Experiment (1968)



Deep Inelastic Scattering

k

k

q

P, M W

• W is the invariant mass of the
hadronic system

• In lab frame: P = (M, 0)

• In any frame, k = k′ + q, W = p+ q

• Invariants of the problem:

Q2 = −q2 = −(k − k′)2

= 2EE′(1− cos θ) [in lab]

P · q = P · (k − k′)
= M(E − E′) [in lab]

• Define ν ≡ E − E′ (in lab frame)

so P · q = mν and

W 2 = (P + q)2

= (P −Q)2

= M2 + 2P · q −Q2

= M2 + 2Mν −Q2

where Q2 = −q2

• Elastic scattering corresponds to

W 2 = P 2 = M2

I Q2 = 2Mν elastic scattering

• We can define 2 indep dimensionless
parameters

x ≡ Q2/2Mν; (0 < x ≤ 1)

y ≡
P · q
P · k

= 1− E′/E; (0 < y ≤ 1)

• x = 1 corresponds to the elastic limit



The Most General Form of the Interaction

• Express cross section
dσ = LeµνW

µν

where W describes the proton current (allowing substructure)

• Most general Lorentz invarient form of Wµν

I Constructed from gµν , pµ and qµ

I Symmetric under interchange of µ and ν (otherwise vanishes when

contracted with Lµν)

Wµν = −W1g
µν +

W2

M2
pµpν +

W4

M2
qµqν +

W5

M2
(pµqν + pνqµ)

• W3 reserved for parity violating term

• Not all 4 terms are independent. Using ∂µJ
µ = 0 can show

W5 = −
p · q
q2

W2

W4 =
p · q
q2

W2 +
M2

q2
W1

Wµν = W1(−gµν +
qµqν

q2
) +W2

1

M2
(pµ −

p · q
q2

qµ)(pν −
p · q
q2

qν)



Structure Functions

• Using notation from previous page, we can express the x-section for
DIS

dσ

dΩdE′
=

α2

4E2

cos2( 1
2θ)

sin4( 1
2θ)

[
W2(q2,W ) + 2W1(q2,W ) tan2(

1

2
θ)

]
• These are the same two terms as for the elastic scattering

• W1 and W2 care called the structure functions

I Angular dependence here comes from expressing covariant
form on last page in lab frame variables

I Two structure functions that each depend on Q2 and W
I Alternatively, can parameterize wrt dimensionless variables:

x ≡ Q2/2Mν

y ≡ P · q
P · k

= 1− E′/E



Studying the Proton at Large Momentum Transfer

• SLAC-MIT group measured
dσ/dq2dν at 2 angles: 6◦ and
10◦

• For low W dominated by
production of resonances

• Surprise: Above the resonance
region, σ did not fall with Q2

• Like Rutherford scattering, this
is evidence for hard structure
within the proton



Evidence for Hard Substructure

dσ

dΩdE′
=

α2

4E2

cos2( 1
2
θ)

sin4( 1
2
θ)

[
W2(q2,W ) + 2W1(q2,W ) tan2(

1

2
θ)

]

• How should we parameterize
this deviation from behaviour
predicted for pointlike proton?

I To determine W1 and W2

separately, would need to
measure at 2 values of E′

and of θ that give the
same q2 and ν

I The first exp couldn’t do
this: small angle where
experiment ran, W2

dominates so study that



SLAC-MIT Results: Scaling

• One more change of variables:

F1(x,Q2) ≡ MW1(ν,Q2)

F2(x,Q2) ≡ νW2(ν,Q2)

• Study F2 for various energies
and angles

• When low Q2 data excluded, F2

appears to depend only on
dimensionless variable x and
not on Q2

• This phenomenon is called
“scaling”



What does Scaling Tell Us? (I)

• Supposed there are pointlike partons inside the nucleon

• Work in an “infinite momentum” frame: ignore mass effects

• Proton 4-momentum: P = (P, 0, 0, P )

• Visualize stream of parallel partons each with 4-momentum xP where

0 < x < 1; neglect transverse motion of the partons

I x is the fraction of the proton’s momentum that the parton
carries

• If electron elastically scatters from a parton

(xP + q)2 = m2 ' 0

x2P 2 + 2xP · q + q2 = 0

Since P 2 = M2, if x2M2 << q2 then

2xP · q = −q2 = Q2

x =
Q2

2P · q
=

q2

2Mν

This x is the same x we defined before!

Deep inelastic scattering can be described as elastic scattering of the

lepton with a parton with momentum xP



What does Scaling Tell Us? (II)

• Suppose the partons in the proton have a distribution of fractional

momentum f(x)

I f(x)dx = probability of finding a parton carrying a fraction of the

proton’s momentum between x and x = dx

• We can write the inelastic ep scattering cross section as an incoherent
sum of elastic scatters off the partons inside the proton

dσep

dEdΩ
=
∑
i

∫ 1

0

f(x)
dσei

dEdΩ

where the sum over i is a sum over partons

• The cross section only depends on x = q2/2Mν because that is the

combination that picks out the momentum fraction carried by the parton



What Have We Learned?

Scaling of the Structure Functions is evidence for the presence

of pointlike partons with the proton!

Some comments:

• We are using an impulse approximation where the scattering
occurs before the partons have a chance to redistribute
themselves

• We implicitly assume that after the scattering, the partons
that participate in the scattering turn into hadrons with
probability=1

• This is a lowest order calculation. We will see later that to
higher order in perturbation theory, QCD corrections will
introduce slow scaling violations (Q2 dependence).



Some Observations (I)

• Let f(x) be the prob of finding a parton with mom fraction between
x and x+ dx in the proton.

• If the partons together carry all the momentum of the proton∫
dx xf(x) =

∫
dx x

∑
i

fi(x) = 1

where
∑
i is a sum over all partons in the proton

• We call f(x) the parton distribution function since it tells us the
momentum distribution of the parton within the proton

• This is the first example of a “sum rule”



Some Observations (II)

• It’s natural to associate the partons with quarks, but that’s not the whole
story

• Because ep scattering occurs through the electromagnetic interaction, it
only occurs via scattering with charged partons.

• If the proton also contains neutral partons, the EM scattering won’t “see”
them

• Let’s assume that the ep scattering occurs through the scattering of the e

off a quark or antiquark

I We saw that the SU(3) description of the proton consists of
2 u and 1 d quark.

I However we can in addition have any number of qq pairs
without changing the proton’s quantum numbers

I The 3 quarks (uud) are called valence quarks. The additional
qq pairs are called sea or ocean quarks.



Another Sum Rule

• To get the right quark content for the proton:∫
u(x) − u(x)dx = 2∫
d(x) − d(x)dx = 1∫
s(x) − s(x)dx = 0



Writing the DIS cross section in terms of PDFs

• The cross section is incoherent sum over elastic scattering with partons

• If partons are quarks, they are Dirac particles and we can calculate
everything:

dσ

dE′dΩ
|Dirac =

4α2E′2

Q2

[
cos

2 θ

2
−

q2

2M2
sin

2 θ

2

]
δ(ν + q

2
/2Mx)

• Taking incoherent sums:

dσ

dE′dΩ
|Dirac =

∑
i

∫ 1

0
dx fi(x)e

2
i

[
cos

2 θ

2
+Q

2
/2M

2
x
2

sin
2 θ

2

]
δ(ν + q

2
/2Mx)

• Using the property of delta functions

δ(g(x)) =
δ(x− x′)

|g′(x− x0)|x=x0

where g(x0) = 0, we can write

δ(ν −Q2
/2Mx) =

δ(x−Q2/2Mν)

Q2/2Mx2
=
x

v
δ(x−Q2

/2Mν)

• This gives us:

dσ

dE′dΩ
=
∑
i

∫ 1

0
dx fi(x)e

2
i

[
cos

2 θ

2
+

Q2

2M2x2
sin

2 θ

2

]
x

ν
δ(x−Q2

/2Mν)



Continuing from last page
• The result we just obtained on the previous page was

dσ

dE′dΩ
=
∑
i

∫ 1

0
dx fi(x)e

2
i

[
cos

2 θ

2
+

Q2

2M2x2
sin

2 θ

2

]
x

ν
δ(x−Q2

/2Mν)

• Notice that we have one term proportional to cos2 θ
2

and one proportional to sin2 θ
2

I This is the same form as our phenomenological form for the ep scattering:

dσ

dE′dΩ
=

α2

4E2

1

sin4( θ
2

)

[
W2(x) cos

2
(
θ

2
) + 2W1(x) sin

2
(
θ

2
)

]
I Equating terms

W2(x) =
∑
i

fi(x)e
2
i

x

ν

W1(x) =
∑
i

fi(x)e
2
i

Q2

2Mν

x

ν
δ(x−

Q2

2Mν
)

=
∑
i

fi(x)
e2i

2M

• It’s usual to define
F2(x) ≡ νW2(x) F1(x) ≡ MW1(x)

Then

F2(x) =
∑
i

x fi(x)e
2
i F1(x) =

∑
i fi(x)

e2i
2

F2(x) = 2xF1(x)

This is called the Callen-Gross relation• Note: If our partons had spin-0 rather than spin- 1
2

, we would have found F1 = 0



What does the data look like?

from Perkins

The partons act like spin-1/2 Dirac particles!



If partons are quarks, what do we expect?

Max Klein, CTEQ School Rhodos 2006

• Elastic scattering from proton has
x = 1

• If 3 quarks carry all the proton’s
momentum each has x = 0.3

• Interactions among quarks smears
f(x)

• Radiation of gluons softens

distribution and adds qq pairs

I Describe the 3 original
quarks as “valence quarks”

I qq pairs as sea or ocean
• Some of proton’s momentum carried

by gluons and not quarks or
antiquarks



Using Isospin: Comparing the Proton and Neutron

• Ignore heavy quark content in the proton: consider only u, d, s
• Write the proton Structure Function

F
p
2 (x)

x
=
∑
i

f
p
i (x)e

2
i =

4

9
(u
p
(x) + u

p
(x)) +

1

9
(d
p
(x) + d

p
(x)) +

1

9
(s
p
(x) + s

p
(x))

• Similarly, for the neutron

Fn2 (x)

x
=
∑
i

f
n
i (x)e

2
i =

4

9
(u
n

(x) + u
n

(x)) +
1

9
(d
n

(x) + d
n

(x)) +
1

9
(s
n

(x) + s
n

(x))

• But isospin invariance tells us that up(x) = dn(x) and dp(x) = un(x)
• Write F2 for the neutron in terms of the proton pdf’s (assuming same strange

content for the proton and neutron)

Fn2 (x)

x
=

4

9
(d
p
(x) + d

p
(x)) +

1

9
(u
p
(x) + u

p
(x)) +

1

9
(s
p
(x) + s

p
(x))

• Assuming sea q and q distributions are the same:

u(x)− u(x) = uv(x), d(x)− d(x) = dv(x), s(x)− s(x) = 0

• Taking the difference in F2 for protons and neutrons:

1

x
[F
p
2 (x)− Fn2 (x)] =

1

3
[uv(x)− dv(x)]

which gives us a feel for the valence quark distribution



What the data tells us

From Halzen and Martin

• Looks the way we expect from the cartoon on page 27

• Next question: How to measure the partons’ charge
I To do this, must compare e and ν scattering!


